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Abstract

The International Agency for Research on Cancer announced that in 2020 female breast cancer 

became the most diagnosed cancer worldwide and the most common cause of cancer-related 

death in women. Still, breast cancer generally has a good prognosis with timely detection and 

appropriate treatment. Recently, computer-aided diagnosis (CAD) systems have shown 

promising results in using artificial intelligence (AI) to detect malignant lesions in breast 

ultrasound (US) imaging. When working with AI in a clinical setting, however, the American 

College of Radiology advocates for radiologist understanding of the algorithms in use. 

Accordingly, this study contributes to an ongoing collaboration between the University of 

Wisconsin-La Crosse and Mayo Clinic Enterprise by investigating three methods of AI 

explainability for the CAD software in development. Class activation maps, saliency maps, and 

attention map-enhanced class activation maps were compared to determine the most useful 

technique for visualizing regions in the US used by the models to determine pathology. The 

evaluation showed that saliency maps are the most promising method for visually explaining 

breast US classification. However, the small dataset and simplified model architecture used in 

this study mean that further research is necessary before fully implementing this method within 

the greater collaboration.
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Chapter 1: Introduction

Background

Among women in the United States, breast cancer is the second most frequent cancer 

diagnosis and cause of cancer-related death, leading to an estimated 287,850 new cases of 

invasive breast cancer and 43,250 deaths in 2022 (Giaquinto et al., 2022). In 2020, female breast 

cancer became the most commonly diagnosed cancer in the world and the most common cause 

of cancer-related death in women (International Agency for Research on Cancer, 2021). These 

figures and trends highlight the magnitude of the situation and underscore the importance of 

continued research in the field of breast cancer.

The essential components of effective breast cancer diagnosis and treatment are clinical 

breast assessment and examination followed by diagnostic imaging, tissue sampling, prompt 

surgery, and systemic therapy (Ginsburg et al., 2020). Diagnostic imaging presents an 

opportunity for the practical application of data science because the images are rich in clinical 

indicators not always visible to the human eye (Agarwal, 2022). This project focuses on the 

diagnostic imaging stage.

In the case of breast cancer, mammography and breast ultrasound (US) comprise two of 

the most used imaging modalities. According to Shen, Shamout, et al. (2021), while 

mammography is the most widely used technique for imaging, it has significant limitations: it is 

not always accessible and can produce poor results in patients with dense breast tissue; therefore, 

breast US often serves as a supplementary modality in screening and as the primary modality in 

diagnosis. Further, breast US has been found to have a comparable cancer detection rate to that 

of mammography (Berg et al., 2015).
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This project will contribute to an ongoing collaboration between the University of 

Wisconsin-La Crosse and Mayo Clinic Enterprise (BUS Project). The initiative aims to develop a 

state-of-the-art Computer-Aided Diagnosis (CAD) system for breast US lesion interpretation by 

using large case studies from Mayo Clinic Enterprise and advanced AI technology supported by 

UWL Mathematicians, Data Scientists, and graduate students.

Statement of the Problem

Breast US is an important modality for the screening and diagnosis of breast cancer. 

However, like mammography, this technique is not without drawbacks and limitations. In the 

same study that found breast US to have a comparable detection ability to mammography, the 

authors also highlighted the higher false-positive rate (i.e. the rate that patients without cancer 

are called for further screening or biopsy) of breast US (Berg et al., 2015). Across Mayo Clinic 

Enterprise, the positive biopsy rate following a breast US ranged from 31-51% in 2019 and 2020. 

These biopsies following a false-positive breast US classification are unnecessary procedures 

and place undue stress on patients and their families, as well as on the healthcare system.

In addition, ultrasound is very user-dependent as an imaging modality and has the largest 

range of radiologist lesion interpretation and positive biopsy rates. Evans et al. (2018) 

recommend that women referred for breast US be informed that the operator’s specific 

competence and experience can dramatically influence the diagnostic ability of their ultrasound. 

This variation creates non-uniform patient care across the health system and can exacerbate 

already present disparities.

Recent advances in artificial intelligence (AI) and deep learning, particularly 

convolutional neural networks (CNNs), have the potential to address some of these limitations 

when applied to image classification and object detection. However, the application of deep 
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learning and AI to sensitive health data within the medical field presents its own challenges and 

limitations. A deep learning neural network such as a CNN has hidden layers that can be non-

intuitive and offer no insights into how or why the algorithm makes intermediate decisions. 

Despite this, some level of explainability must necessarily be built into the product of this project 

to achieve a level of trust and transparency for use by radiologists in breast cancer diagnosis.

Conceptual Framework

The partnership between Mayo Clinic and the University of Wisconsin-La Crosse is 

structured into three phases:

1. Build and train deep learning models to classify breast US lesions from high-quality 

Mayo Clinic data into the correct Breast Imaging Reporting & Data System (BI-RADS®) 

Assessment Category. BI-RADS is a system used by radiologists for lesion assessment 

and to clarify communication with physicians and patients (Mendelson et al., 2013). This 

approach is completely automated and functions as a black box.

2. Build a second algorithm to classify lesions that mimics systems used by experts. As 

these systems rely on characteristics of the lesion normally determined by a radiologist—

such as orientation, margins, elasticity, and vascularity—machine learning algorithms 

and rule-based algorithms will be used alongside optional user input.

3. Combine the models developed in phases one and two to produce a single system that 

outperforms each of the individual models.

At present, the BUS Project is in its second year and collaborators are currently working on all 

three objectives; in particular, another graduate student is making significant progress in 

applying state-of-the-art segmentation models for more accurate lesion segmentation. These 

results can be used to compute features and characteristics for the machine learning algorithms.
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The project described herein will focus on the black box aspect of algorithms created 

according to the first approach. While it is true that artificial neural networks were inspired by 

the biological neural network structure of the brain, the internal workings and training processes 

are poorly understood—and without understanding how an algorithm achieved certain results, it 

is difficult to then trust those results (Cole, 2020). Still, methods are being developed to 

introduce explainability into some deep neural network algorithms. 

Working with breast US image data, this project implements and evaluates three different 

techniques that create visual explanations for breast US classification by deep learning 

algorithms: (a) class activation maps, (b) saliency maps, and (c) attention map-enhanced class 

activation maps. Each method interacts uniquely with the algorithm and generates visualizations 

highlighting parts of the US that were important for classification. However, attention map-

enhanced class activation maps are implemented using a vision transformer model architecture, 

which has only recently begun to be studied on medical imaging. Therefore, the evaluation of 

this method is preliminary in the context of the BUS Project. In addition, because the central 

concept of this study explores the feasibility of each visualization technique, the deep learning 

algorithms utilized will output binary lesion classifications—benign or malignant—rather than 

the more complex BI-RADS classification system.

Purpose of the Study

Usefulness and practical application of any CAD software must stay at the forefront of 

any study aiming to bring cutting-edge technologies to clinical practice. With AI algorithms 

applied to medical imaging, this is especially important. The American College of Radiology 

advocates for physician understanding—at a high level how algorithms are developed and 
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trained, how they perform, how they should be used, and their limitations—when working with 

AI in a clinical setting (Sendak et al., 2021). 

The purpose of this project is to support the goal of practical application by building 

algorithm explainability into the CAD framework. Accordingly, three methods of visual 

explanation for AI classification of breast US imaging will be evaluated to determine the most 

useful technique for radiologists and technicians who conduct imaging. In the case of this 

collaboration between Mayo Clinic and the University of Wisconsin-La Crosse, there is a unique 

opportunity to receive direct input and feedback from a practicing radiologist. This feedback will 

aid in the evaluation of user experience and usefulness.

Significance of the Study

The application of deep neural networks to medical imaging is a fast-moving field that 

continues to develop. Studies have found that state-of-the-art CAD algorithms using deep 

learning for binary classification of breast US lesions have achieved as high as 87% accuracy 

(Cao et al., 2019). Other benefits of AI applications to breast ultrasonography include greater 

workflow efficiency and a reduction of interobserver variability—the variability between 

radiologists that contributes to non-uniform care (Kim et al., 2021). Altogether, the responsible 

implementation of deep learning in breast US lesion diagnostics could have tremendous benefits.

In particular, this collaboration represents an integral step forward in the responsible 

implementation of AI on breast US imaging. If the high-false positive rate of breast US can be 

mitigated, and a CAD system that promotes transparency and trust can be designed, it is the hope 

of this study to improve patient care for individuals and benefit the health system as a whole. 

Organization of the Project
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The following objectives outline the project structure and how it will meaningfully 

contribute to the BUS Project overall:

1. Compile breast US images from multiple sources for training Convolutional Neural 

Networks (CNNs) and Vision Transformers (ViTs).

2. Apply deep learning algorithms to Mayo Clinic breast US images and build a model with 

80-90% accuracy in classifying lesions as benign or malignant.

3. Implement class activation maps (CAMs), saliency maps, and attention map-enhanced 

CAMs with deep learning algorithms on Mayo Clinic breast US images to establish 

interpretability in the BUS Project and increase usability by radiologists.

4. Present outcomes from various methods of model explainability through appropriate data 

visualizations and evaluate with project team and client to determine the most useful 

method to aid radiologists in lesion interpretation and incorporate the selected method 

into the project codebase.

Limitations of the Study

Deep learning algorithms often require extremely large amounts of data for training and 

validation to achieve a high level of accuracy. Currently, the number of high-quality, labeled 

breast US images available from the Mayo Clinic is limited. Efforts are being made to increase 

the size of the dataset and find solutions to the lack of data issue, but the algorithms’ 

performance are not guaranteed to reach levels found in similar studies. While the focus of the 

project described here is on evaluating methods for algorithm explainability, poor model 

performance could negatively affect the results. In turn, there could be difficulty in determining 

the most appropriate technique. 
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Additionally, it is worth noting again that the full CAD software, once completed, will be 

making assessments according to the BI-RADS system for evaluating breast US. Because the 

scope of this study is centered around visualization techniques, the deep learning models utilized 

will only be making binary classifications between benign and malignant.

Chapter 2: Literature Review

Introduction

The application of deep learning algorithms to medical data is an evolving field that 

shows great promise. In particular, diagnostic imaging presents a golden opportunity to apply 

sophisticated algorithms and achieve results similar to—or better than—those achieved by a 

trained radiologist. The collaboration between the University of Wisconsin-La Crosse and Mayo 

Clinic aims to apply deep learning algorithms to high-quality breast US images provided by 

Mayo Clinic, eventually creating a state-of-the-art CAD software to aid radiologists in 

diagnosing breast cancer lesions, thus reducing the high false-positive rate and ensuing 

unnecessary biopsies attributed to breast US as a diagnostic modality.

This project deals specifically with methodologies for explaining how deep learning 

algorithms arrive at classification results. Three main techniques are used to output visualizations 

depicting the discriminative image regions important to classification. However, some of these 

methods have not been rigorously studied and applied to breast US images, while others have 

served a different purpose than model explainability. This literature review will cover the various 

deep learning model architectures utilized for medical image classification and their most 

relevant interpretability techniques. A review of their respective applicability to medical imaging 

and breast US will also be presented.

Deep Learning Computer-Aided Diagnosis Systems
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Over the past decade, computer-aided diagnosis (CAD) systems in the medical field have 

advanced alongside the rapid development of deep learning. Jiménez-Gaona et al. (2020) present 

a critical review of how deep learning has been applied to breast tumor diagnosis from 2010-

2020. The authors found that convolutional neural networks (CNNs) are the most popular models 

used for intelligent image analysis and cancer detection through their review, leading to the 

prominence of Deep Learning (DL) CAD systems in recent studies. While providing good 

performance, CNNs also automate feature extraction, which has historically been a manual task 

used as input for traditional Machine Learning (ML) CAD systems (Cao et al., 2019). Among the 

most commonly used metrics for evaluating DL-CAD system performance are accuracy, 

sensitivity, specificity, and confusion matrices, all of which will be measured in this study. 

Overall, Jiménez-Gaona et al. concluded that DL-CAD can achieve better performance than 

traditional ML-CAD, although there is still a need to improve the models, specifically with larger 

and more balanced data sets and better optimization methods. Data scarcity and class-imbalances 

were two obstacles in this study, and they continue to pose major challenges to the BUS Project. 

The paper concludes by emphasizing the importance of CNNs in DL-CAD systems and laying 

out some of the challenges that must still be overcome. 

Convolutional Neural Networks

As noted above, CNNs are the most common model used for computer vision tasks in 

breast cancer diagnostic imaging. Computer vision is a field of artificial intelligence (AI) where 

computers extract meaningful information from images, which has applications in many fields 

including healthcare (IBM Cloud Education, 2020). The areas of medical diagnosis where 

computer vision and CNNs can be used are numerous, but the basic building blocks are often 
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similar. Figure 1 illustrates the three layers of CNNs: the input layer, the hidden layer consisting 

of convolutions, pooling, and normalization, and the output layer.

Figure 1

The Building Blocks of CNN Models (NVIDIA, n.d.)

First, the input image goes through the convolutional layers where filters are repeatedly applied 

to shifting sections of pixels, eventually producing a feature map that indicates the locations and 

strengths of detected features (NVIDIA, n.d.). Different filters might detect vertical lines, 

horizontal lines, edges, or degrees of light intensity. Compiling these outputs can reveal complex 

objects or elements from the training data. Next is the pooling layer which reduces the size of the 

feature maps to save on computation, often taking either the maximum values only or the 

average values. Normalization then occurs, stabilizing the network. Finally, the fully connected 

layer connects neutrons between layers and produces an output.

Yu et al. (2021) explain the inner workings of the most popular CNN models in use and 

expand upon their performance in medical imaging for different organs and conditions. The 

authors attribute the success of CNN in medical imaging to its built-in data pre-processing 
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techniques such as image normalization and augmentation, and to hyper-parameter optimization 

for parameters such as learning rate. Among the models described—AlexNet, GoogleNet, Deep 

Residual Network (ResNet), Regions with CNN Features (R-CNN), and Fully convolutional 

neural networks (F-CNN)—the authors noted that ResNet keeps more of the input information 

intact and does not produce relatively higher training error in deeper networks than other models. 

It does this by creating shortcut connections between layers, avoiding degradation that can occur 

due to repeated multiplication. A previous study within the BUS Project found the ResNet 

architecture to be the most suited for breast US out of the common models listed above (Jarvey, 

2022).

Class Activation Maps

One of the originating methods for visualizing why or how CNNs make predictions are 

class activation maps (CAMs), which are heatmaps produced by a model that highlight regions 

of an image that were important to classification. CAMs have gone on to precipitate increasingly 

advanced and specialized methods such as Gradient-weighted (Grad) CAM, GradCAM++, 

HiResCam, and EigenCAM. The foundation of CAMs is that some CNN layers already perform 

object detection using only class-level labels (Zhou et al., 2015). Zhou et al. (2016) demonstrate 

that by replacing the fully-connected layers before model output with pooling—global average 

pooling (GAP) or global max pooling (GMP)—and a fully-connected softmax layer, CNN 

classification performance is not significantly impacted and a CAM can be created showing the 

discriminative parts of the object detected. Figure 2 illustrates how the class-specific activations 

are weighted by relevance to the predicted class and then pooled to map the regions showing an 

Australian terrier, in this case. The authors also note the distinction between GAP and GMP: 
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GMP encourages the algorithm to highlight only the maximum discriminative region, thereby 

potentially overlooking other important regions.

Figure 2

Class Activation Mapping using Global-Average Pooling (Zhou et al., 2015)

In application to automated diagnosis of breast US, Qi et al. (2019) found that using 

CAMs as additional input to their model to enhance the region used to classify lesions 

experimentally resulted in improvements to model performance. In this case, CAMs were not 

used as an interpretability aid but still demonstrated their value to DL-CAD systems for breast 

US diagnosis.

While not yet studied in application to DL-CAD of breast US, two other descendants of 

CAM—Grad-CAM and HiResCAM—introduced important breakthroughs in the field of AI 

explainability. Grad-CAM, proposed by Selvaraju et al. (2019), does not suffer from the same 

tradeoff between model complexity and model transparency as CAM. The authors show that it is 

possible to generate class-discriminative visual explanations for any CNN without modifying the 

architecture of the model as is done with CAM. In addition, the authors define two criteria for a 
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good visual explanation of CNN: (a) localize the category or class in the image, and (b) have a 

high resolution for capturing fine details. 

HiResCAM, on the other hand, confronts a recently discovered limitation of Grad-CAM 

in that it can sometimes highlight regions of an image that were not actually used by the model. 

Draelos & Carin (2020) propose HiResCAM as a generalization of CAM—it works on all 

CNNs—that guarantees faithful explanations of CNNs. As trust and transparency are key aims of 

this study, ensuring that visual explanations of an algorithm’s predictions are faithful is a 

relevant consideration. For example, a physician needs to know if an algorithm actually used the 

region of the breast lesion to make a classification. This is an important aspect of the responsible 

application of algorithms to healthcare.

Saliency Maps

Saliency maps are another important methodology for visualizing and interpreting how a 

deep learning model achieves a result. This technique, first presented by Simonyan et al. (2014), 

can work with any CNN classification model to derive a class saliency value for every pixel in 

an image. These values are then composed into a saliency map depicting the relative importance 

of each pixel for the selected class. Superimposed upon the original image, a heatmap takes 

shape showing the salient regions of the image used for classification. Simonyan et al. also note 

that this method can be extremely fast—only one backpropagation pass required—and can be 

achieved using only image labels and no bounding boxes or segmentation masks.

Two studies using deep learning and advanced AI have had great success in accurately 

classifying breast mammography and ultrasound images as benign or malignant by utilizing 

saliency maps to narrow the region of interest (ROI) input into the models. Shen, Wu, et al. 

(2021) proposed a novel framework where a global module accepts an entire mammograph 



13

image and outputs a pixel-level saliency map highlighting the ROIs: regions the models believe 

contain a malignant lesion. Then the image is cropped to focus on the ROI and passed into the 

local module, where a final classification is made. In essence, the saliency map segments the 

lesion and improves the performance of the final classification model. The researchers found that 

this model design surpassed radiologist-level diagnostic abilities in a reader study.

Figure 3

Saliency Map of Breast Ultrasound (Shen, Shamout, et al., 2021)

Shen, Shamout, et al. (2021) applied a similar model framework to breast US images and 

similarly achieved a higher area under the receiver operating characteristic curve (AUROC) than 

the average AUROC of ten board-certified breast radiologists surveyed. In addition, the study 

found that with the assistance of the AI model, radiologists were able to decrease their false-

positive rate and reduce requested biopsies. Lastly, this second study placed greater importance 

on model explainability than the previous study, highlighting how their saliency maps (see 
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Figure 3) develop clinician trust and understanding, especially of the potential limitations of the 

model.

Vision Transformers and Conformers

In contrast to the previously described methodologies for explaining CNN models—

CAMs and saliency maps—it was recently proposed that CNNs can be replaced by vision 

transformers (ViTs) in medical diagnostic imaging. Matsoukas et al. (2021) explored whether the 

transition from CNNs to ViTs could constitute a trivial change in practice but result in equal or 

better performance alongside additional advantages. The findings in their study applied to three 

mainstream healthcare datasets, including a mammography dataset, show that with sophisticated 

pre-training methods ViTs outperform their counterpart CNNs. Additionally, the transition was 

essentially seamless while gaining improved model explainability due to the built-in attention 

maps created by ViTs. The authors also note that ViT performance suffers to a greater degree 

than CNN in situations where data is scarce. This emphasizes the need for rigorous model pre-

training.

At the core of ViT networks are are self-attention layers where pairwise attention values 

are assigned between patches of the image (Dosovitskiy et al., 2021). To visualize the model, 

these attentions are often considered as relevance scores and the results from a single layer are 

used as a heatmap (Chefer et al., 2021). Chefer et al. propose a framework that combines 

attentions from multiple layers in a way that maintains the sum of the relevancy. The remarkable 

performance of this framework can be seen in Figure 4 comparing many popular AI 

explainability techniques.
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Figure 4

Attention Map Comparison (Chefer et al., 2021)

Taking attention maps one step further, a model architecture that utilizes a CNN branch 

and ViT branch was introduced by Peng et al. (2021), called a Conformer. This hybrid network 

structure takes advantage of a CNN’s ability to capture local features, such as lines, edges, and 

shapes, and a ViT’s ability to capture long-distance feature dependencies, or global 

representations. The focus of their study was on demonstrating the viability of the Conformer as 

a general backbone network, rather than the application to any specific computer vision task.

Built on a Conformer backbone, Li et al. (2022) then proposed TransCAM, a method 

using only image-level labels for refining the CAMs generated by a CNN with the attention 

maps produced by a ViT. The model framework can be visualized in Figure 5. This method for 

implementing a ViT and generating a visual explanation is fitting for this study, given that only 

image-level labels were used to train the models. Lastly, as TransCAM is such a newly proposed 

architecture, it has not yet been studied in application to medical imaging.
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Figure 5

TransCAM Framework (Li et al., 2022)

Note. Input image I of a plane is seen on the left, with the enhanced CAM M*
c generated by 

TransCAM visualized on the right. The dual-branch Conformer network with L convolutional 

and transformer blocks can be seen in the yellow box. Attention map A* is constructed by 

averaging the self-attention weights from the transformer blocks. The CAM Mc generated by the 

CNN branch is refined by the attention map A* through a single-step dot product refinement, 

resulting in the improved CAM M*
c.  

Conclusion

The various deep learning model architectures and methodologies for explaining AI have 

been discussed and their recent application to medical imaging and breast US diagnosis 

presented. A common theme in the literature is the multipurpose usage of the model 

explainability techniques, both to introduce transparency and interpretability and to act as 

functioning parts of the AI architecture. Class activation maps and saliency maps have both been 
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used by CAD systems as additional inputs to help the model locate the lesion and then make a 

classification. The studies using saliency maps to determine ROIs are perhaps the most similar to 

this project, albeit with different primary purposes for the visualizations. The focus of this study 

will principally be on the value of these methods as additional transparency for a radiologist 

using DL-CAD for breast US diagnosis, rather than as an input to the actual CAD software. 

Training the deep learning algorithms—basic CNN, Saliency-adapted CNN, and TransCAM—is 

a stepping stone to allow the creation of model explainability visualizations when the algorithms 

are specifically applied to breast US images. The comparison and evaluation of the methods will 

be qualitative rather than quantitative, focusing on how a radiologist might view the visualization 

and what information is communicated.

Chapter 3: Methodology

Introduction

The CAD software produced by the BUS Project collaboration between the University of 

Wisconsin-La Crosse and Mayo Clinic aims to match or exceed the breast US diagnostic 

accuracy achieved by board-certified radiologists. While the software has not reached its final 

iteration, by design it utilizes sophisticated deep learning algorithms to address the computer 

vision task. The software will also provide supplemental information to users, thereby becoming 

a valuable tool for radiologists and helping to reduce false-positive diagnoses and unnecessary 

biopsies. 

Model explainability will be an important piece of the supplemental information. The 

method of model explainability should provide a radiologist with insight into how the model 

determined its output and confidence in the model’s prediction, allowing them to responsibly 

apply the software. However, deep learning algorithms are by nature incredibly complex and 
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difficult to interpret. Prompted by this challenge, the research presented here implemented and 

evaluated three methods of model explainability for deep learning algorithms applied to breast 

US images. 

The current standard model architecture for CAD on medical imaging is CNN, for which 

two methods of model explainability were evaluated. One preliminary method of Conformer—

combined ViT and CNN branches—model explainability was also investigated as transformers 

have recently been found to achieve similar or better results compared to CNNs when applied to 

generic image datasets. However, the application of transformers to medical imaging is in its 

infancy, meaning that the analysis of this method was only exploratory and not ready for 

integration with the larger BUS Project.

Concerning the data for this project, large datasets are often necessary to produce desired 

results from deep learning algorithms. While collaborators at Mayo Clinic are working to 

anonymize and annotate more high-quality breast US images, the number of images remains 

small. For this reason, public breast US datasets supplemented the data for this project to aid in 

model performance.

Data Collection

The Mayo breast US dataset used in this study was provided by Mayo Clinic and 

contained 275 images from 153 unique patient studies as of November 25, 2022. For many 

patients, an image of the lesion was taken from both the longitudinal and transversal probe 

angles—this meant that the dataset contained multiple images of some lesions. The average 

image resolution was 560 x 560 pixels in height and width, respectively. A binary pathology 

result of either benign or malignant was reported for each image, along with radiologist 

annotations on lesion characteristics and other patient information. The Mayo Clinic’s data 
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privacy team handled data anonymization to ensure all HIPAA and privacy regulations were met, 

removing all personally identifiable information (PII) from each image. To keep track of all 

relevant information related to the images, randomly generated external IDs were used to replace 

patient identification numbers. The images were then saved in PNG format with the naming 

convention ‘externalID_pathology_orientation.png’.

To augment the small number of images available through Mayo Clinic, three public 

breast US datasets were added to the project data for model training. Table 1 summarizes the 

contributions and relevant features of each dataset. The first, Breast Ultrasound Dataset B 

(BUS_Dataset_B), gave no indication of whether any images were from the same patient (Yap et 

al., 2017). The second public dataset, Breast Ultrasound Images with Ground Truth 

(Dataset_BUSI_with_GT), contained “normal” images in addition to benign and malignant (Al-

Dhabyani et al., 2020). The normal images did not contain any lesions and were filtered out for 

this study. Additionally, the source did not provide information on which images corresponded 

to the same patient. The last supplemental data was Breast Ultrasound Videos (BUV), with 75 

videos of benign lesions and 113 videos of malignant lesions (Lin et al., 2022). The individual 

frames from each video were saved as PNG files. Because adjacent frames were nearly identical, 

each case was limited to include every 50th frame.

In total, 1678 breast US images were collected to train, test, and visualize deep learning 

algorithms. The dataset source, image file path, and pathology of each image were collated into 

one dataframe. The dataframe also maintained the connection between images from the same 

patient or lesion. Minor data cleaning was necessary to remove two duplicate images from the 

Mayo dataset and filter the normal US images that did not contain lesions.
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Table 1

Data Sources

Number of Images
Dataset Name

Total Benign Malignant

Unique 

Patients

Average 

Resolution (hxw)

Mayo 275 144 131 153 560 x 560

BUS_Dataset_B 163 109 54 — 450 x 540

Dataset_BUSI_with_GT 647 437 210 600 490 x 610

BUV 593 233 360 188 620 x 620

Total 1678 923 755 — 550 x 600

Data Preparation

 Breast US images are captured in grayscale, which can make fine details difficult to 

distinguish. Histogram equalization is a method of image processing that can increase the 

contrast in areas of an image with low contrast and expose features that could be useful for 

image recognition and classification tasks. To prepare the data for modeling, Contrast Limited 

Adaptive Histogram Equalization (CLAHE) was applied to each image. CLAHE was used 

instead of global histogram equalization because details can be lost when the global contrast is 

used. Instead, CLAHE applies histogram equalization to small sections of an image. Figure 6 

illustrates the detail that can be uncovered or suppressed depending on technique. 

After all images in the dataset were processed through OpenCV’s CLAHE function they 

were stored in a new column of the original dataframe as two-dimensional NumPy arrays. This 

step also converted all images to the one-channel grayscale format even though some were 

originally saved in three-channel RGB format. 
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Figure 6

Global Histogram Equalization Compared to CLAHE (OpenCV, n.d.)

Note. Compare details on the statue’s face: (b) causes a loss of information due to over-

brightness, but (c) shows improved contrast throughout the image and more details on the 

statue’s face.

The final step of data preparation was splitting the images into train and test sets. A 

separate model validation set was not necessary because the focus of this study was on methods 

for extracting model explainability visualizations from deep learning algorithms and not on 

model optimization or fine-tuning. However, it was important to account for the numerous 

patients with multiple breast US images, the variability in quality between source datasets, and 

the distribution of benign and malignant images.

Consequently, patients were stratified by dataset and pathology and then randomly split 

among training (80%) and test (20%) sets, totaling 1347 training images and 331 test images. 

This method of splitting ensured that each patient or lesion only appeared in one of the training 

and test sets, and the model was not tested on a lesion it had been trained on. In addition, the 

stratification method maintained the relative distribution of datasets and pathologies between 

training and test sets.

Modeling

(a) Original image (b) After global histogram 
equalization

(c) After CLAHE
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This section details the process of building and training simplified versions of the deep 

learning algorithms used by the BUS Project. The simplifications included using a binary 

pathology category rather than the numeric BI-RADS score that the final CAD software will 

produce, performing only basic data augmentations, and forgoing optimization. Together, these 

adjustments allowed more time to be dedicated to the methods of model explainability described 

in the next section. 

Data Augmentation

Data augmentation is a technique that can be used to artificially increase the amount of 

data in a dataset by generating new data points from the existing data. This improves the 

performance of deep learning algorithms and mitigates the challenge of insufficient data. Two 

geometric augmentations were applied to the data during training to improve model 

performance. The two transformations used were FlipItem and RandomResizedCrop, both 

studied and implemented by Jarvey (2022), who worked on model optimization for the BUS 

Project. FlipItem randomly flipped images in the dataset along their vertical axes with a 

probability of 0.50, creating a new image to train the model on. Images could not be flipped over 

the horizontal axis because the model should never see an image in the upside-down orientation, 

given the standard method of US capture. RandomResizedCrop took a random scaled crop of 

each image containing at least 80% of the area of the original image and resized the crop to 256 

x 256 pixels. This was necessary to fit the input requirements of the pre-trained ResNet-34 

backbone model. Figure 6 shows an example of a histogram equalized breast US image after data 

augmentations and illustrates the data used for model training. Other augmentation techniques 

such as rotation, zoom, brightness, and warp were considered, but the marginal effects on model 

performance were found to be negligible and therefore these augmentations were left out.
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Figure 7

Histogram Equalization and Data Augmentations

Convolutional Neural Networks

The model architectures used for the two methods of CNN explainability—CAMs and 

saliency maps—were very similar: both followed the basic CNN structure described in Chapter 

2, with convolutional layers, pooling layers, normalization, and a fully-connected layer that 

output classification. Additionally, both used the state-of-the-art backbone network ResNet-34. 

This is a model that was pre-trained on generic images from ImageNet and then fine-tuned for 

the new image processing task (Huh, 2016). While there are multiple popular backbone 

networks, such as VGG-16 and DenseNet-201, ResNet-34 was selected because a previous BUS 

Project capstone found it to have the best performance when applied to Mayo Clinic breast US 

images (Jarvey, 2022).

However, a few key modifications were made to the model architecture to generate 

saliency maps. As noted in Chapter 2, CAMs can be produced without altering the model 

architecture in any way, whereas it is necessary to alter the basic CNN model for saliency maps. 

These changes follow the first portion of the model framework used by Shen, Shamout, et al. 

(2021) to produce saliency maps. After the base convolutional filters have been applied, a 
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sigmoid was applied to the weighted average of the feature maps to produce a saliency map for 

each possible classification: benign and malignant. These maps spotlight approximate regions of 

benign or malignant lesions in each image while recording the contribution of each location to 

the pathology prediction. 

The pooling layer was also altered to obtain a single number for prediction for each class. 

Once the saliency maps were stored by the model, WILDCAT pooling was used to average the 

top t percent of pixels in the maps for each class, resulting in a single number used for prediction. 

WILDCAT pooling is a recently studied alternative to GAP and GMP— discussed in Chapter 

2—that balances highlighting only the most important discriminative regions used by a model 

with the possibility of capturing multiple regions when necessary (Durand et al., 2017). 

Lastly, a penalty term was introduced to constrain the saliency maps to only the most 

important regions. This was done with L1 regularization following the approach used by Shen, 

Shamout, et al. (2021). The mean value of each saliency map multiplied by lambda was added to 

the loss function. While Shen, Shamout, et al. tested a range of lambda values, hyperparameter 

tuning was outside the scope of this project. Instead, the model was trained with and without 

regularization (lambda = 0.01 and lambda = 0, respectively) to see if the maps were improved 

and more localized to the lesion.

Conformer

The Conformer model used follows the framework described in TransCAM: Transformer 

Attention-based CAM Refinement for Weakly Supervised Semantic Segmentation, a recently 

published paper proposing TransCAM, a Conformer that segments objects using only image-

level labels (Li et al., 2022). TransCAM, which combines a visual transformer branch with a 

CNN branch, refines the CAM generated from a CNN by leveraging the attention weights 
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generated by the transformer branch. Because this technique is so new, the model consisted of 

adapting the freely available TransCAM code provided by the authors to the task of processing 

grayscale, single-channel breast US images. Pre-trained Conformer weights provided by the 

original architects of the Conformer were used (Peng et al., 2021), and the data augmentations 

for training data were altered to match those used for the CNN models. 

Training

The CNN and Saliency Models were trained in Google Collab notebooks using the fast.ai 

library, which allowed for the simple implementation of deep learning networks. Two separate 

Saliency models were trained, one without regularization (lambda = 0), and one with 

regularization (lambda = 0.01). Cross entropy loss was used as the loss function for fine-tuning 

and fast.ai’s function `lr_find()` found the best learning rate for each model. After the learning 

rates were determined, each model was trained for up to 500 epochs and the model with the 

highest accuracy was saved. MixUp, a technique to prevent overfitting, was also utilized in the 

training process. MixUp blends two images at random from the training data—about 50% of 

pixels from each are represented—and makes it more difficult for the algorithm to memorize 

particular features of the categories, which prevents overfitting (Zhang et al., 2021).

Following the design of TransCAM, the ViT was trained for 20 epochs with a learning 

rate of 0.00005, and the loss function soft margin loss. The optimizer called AdamW, which is an 

extension of stochastic gradient descent, was also used in model training (Kingma and Ba, 2014; 

Loshchilov & Hutter, 2017). Because the original application was for multilabel classification—

that is, detecting instances of multiple classes in one image—the input pathology data was one-

hot encoded to generate CAMs and attention maps for each category. The model and parameter 

weights with the best performance were then saved.
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Inference and Visualization

After training and testing the models on the test set consisting of images from all four 

data sources, only the 55 randomly selected Mayo breast US images in the test set were chosen 

for subsequent inference and visualization. This was done because the images were of a higher 

quality and would produce results most relevant to the BUS Project, mimicking the eventual 

output from the final software.

The CNN model was used to predict pathology labels for each image in the Mayo test set. 

From there, a CAM object was constructed for each of the most popular methods of pixel 

explainability. This follows the implementation guide associated with the 

pytorch_grad_cam library used in this research (Gildenblat, 2021). The following methods 

were applied: (a) GradCAM, weights the two-dimensional activations by the average gradient; 

(b) GradCAM++ is similar to GradCAM but uses second-order gradients; (c) HiResCAM is 

similar to GradCAM but performs element-wise multiplication of the activations and gradients, 

guaranteeing faithfulness; (d) EigenCAM takes the first principle component of the two-

dimensional activations, but has no class discrimination; (e) EigenGradCAM is similar to 

EigenCAM but has class discrimination; (f) FullGrad computes the gradients of the biases from 

all over the network, and then sums them. For each method, a heatmap was generated showing 

the discriminative regions activated for the predicted class. This heatmap was then overlaid on 

the original breast US image, highlighting regions used by the CNN model.

The Saliency model was used to predict pathologies on the same Mayo test set. Because 

saliency map generation was built into the model architecture, visualizing these maps was a 

matter of plotting the original image alongside the maps generated for each class. Malignant 
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activations were shown in red and benign in green. In addition, the probability associated with 

each class was added to the plot.

Because the procedures for modeling, predicting, and visualizing CAMs and saliency 

maps were so similar, a combined plot was created to show both methods of model 

explainability. This can be seen in Figure 8. For simplicity, only a selection of CAM types and 

Saliency maps were included in the plot.

Figure 8

Visualization of GradCAM, HiResCAM, EigenGradCAM, and Saliency Maps

Note. The CNN and Saliency models predicted the pathology of two Mayo test images 

containing malignant lesions. The CNN model used for GradCAM, HiResCAM, and 

EigenGradCAM incorrectly labeled both lesions as benign. The Saliency model with L1 

regularization lambda = 0.01 correctly identified the lesions as malignant.

Like the saliency map method, attention map-enhanced CAMs were generated when the 

model was evaluated because they are built into the model architecture. To visualize TransCAM 

on the Mayo test data, two custom functions provided by Li et al. (2021) were utilized to first 

extract the heatmap from the model and then plot the heatmap alongside the original image. 

However, the application of ViTs to breast US is very new and the visualizations generated were 
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not readily comparable to the previous methods. Consequently, the visualizations from 

TransCAM were not incorporated into the combined plot above.

Summary

This chapter covered the methods used to collect data, build and train three deep learning 

algorithms, and create visual explanations for the algorithm’s predictions. The limited number of 

high-quality breast US images provided by Mayo Clinic were supplemented with three public 

breast US image datasets. Histogram equalization was applied to the images to bring out fine 

details and the data was split into train and test sets. The features and modifications specific to 

each model architecture—basic CNN model with ResNet-34 backbone, CNN model modified for 

saliency maps, and combined CNN and ViT Conformer TransCAM—were described along with 

the data augmentations employed during model training. Finally, the methods for extracting 

heatmaps that provide model explainability were demonstrated. A link to the code used in this 

project can be found in Appendix A.

Chapter 4: Results

Introduction

This chapter reports the most important findings of the study, including the outcomes 

from each deep learning model and the associated visual explanation method covered in the 

previous chapter. The quantitative results from model training are discussed in terms of overall 

accuracy in classifying images as benign or malignant and any variation between classes through 

confusion matrices. This is followed by a qualitative evaluation of the interpretability methods 

and the final visualizations produced. Lastly, the most promising method for visually explaining 

CAD of breast US lesions is summarized.
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It should be noted that the BUS Project represents an ongoing effort that could go 

through many iterations before entering a radiologist’s toolkit. The work presented here 

demonstrates how far the data science community has come in making black box algorithms 

interpretable and shows that these advancements can be applied to breast US imaging.

Model Performance

A summary of relevant metrics for each model is shown in Table 2. Each model is 

discussed in more detail below.

Table 2

Comparing Model Performance

Model Accuracy False-Positive Rate Sensitivity Specificity

Basic CNN 83.4 13.9 79.9 86.1

Saliency Model 𝜆 = 0.01 78.2 20.9 77.1 79.1

TransCAM 73.1 37.4 86.8 62.6

The basic CNN model used to generate CAMs and the modified Saliency Model used to 

generate saliency maps were built with the pre-trained ResNet-34 backbone and were each 

trained for up to 500 epochs. The training data contained high-quality breast US images from 

Mayo Clinic and supplemental images from public datasets, with a very slight class imbalance of 

more benign lesions than malignant lesions. The models achieving the highest accuracy on the 

test data—which contained image quantities from each data source proportionate to the training 

dataset—were saved as the final model.

The best model performance for the basic CNN model was found after 168 epochs of 

training and achieved 83.4% accuracy in the binary classification task. Table 3 shows the 

confusion matrix results from this model.
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Table 3

Basic CNN Model Confusion Matrix

Predicted Values

benign malignant

benign 161 26

A
ct

ua
l V

al
ue

s

malignant 29 115

Table 3 reveals that the model performed slightly worse on malignant lesions, misclassifying 

more malignant lesions as benign than the reverse. This could be particularly harmful in the 

medical field as it could mean some cancers go undetected. The false-positive rate, or rate of 

benign images classified as malignant, was only 13.9%.

The custom Saliency model altered the basic CNN model by generating saliency maps 

for each class and then applying WILDCAT pooling instead of GAP to produce a single value 

for prediction from each map. Two Saliency models were trained, one with L1 regularization 

(lambda = 0.01) that added a penalty term to the cross-entropy loss function to constrain the 

saliency maps to the most important regions, and one without regularization (lambda = 0).

While both models achieved 78.2% accuracy, results are only shown for the model with 

regularization lambda = 0.01 as it had a lower false-positive rate. Table 4 shows the confusion 

matrix results from this model. The confusion matrix for the model without regularization can be 

found in Appendix B.
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Table 4

Saliency Model with L1 Regularization Confusion Matrix

Predicted Values

benign malignant

benign 148 39

A
ct

ua
l V

al
ue

s

malignant 33 111

The Saliency model performed slightly worse than the basic CNN model, most likely due to the 

sigmoid function and altered pooling method. While the CAM visualization method is applied 

retroactively without altering model architecture, the saliency map affects the classification 

results. The false-positive rate was 20.9%, seven points higher than the basic CNN, and the 

Saliency model had the opposite difficulty regarding the classes, misclassifying more benign 

lesions as malignant than the reverse. However, this model misclassified more benign and 

malignant lesions compared to the basic CNN model, which could be weighed against its 

viability for model visualization.

The final deep learning algorithm, TransCAM, was trained according to the paper by Li 

et al. (2021) using pre-trained weights from the creators of the Conformer (Peng et al., 2021). 

After 20 epochs of training using the AdamW optimizer, the model was saved. It was then tested 

on the test set of images and achieved an accuracy of 73.1%. Worth noting, the inference 

framework described by Li et al. was geared toward pixel-level classification rather than image-

level classification. To predict and validate image-level labels, the pseudo-labels generated for 
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optimizing the loss function—found by combining the logits from the transformer and CNN 

branches—were used to calculate accuracy. Table 5 shows the confusion matrix from this model.

Table 5

TransCAM Confusion Matrix

Predicted Values

benign malignant

benign 117 70

A
ct

ua
l V

al
ue

s

malignant 19 125

As can be seen, the TransCAM model achieved lower accuracy than the other models on 

the test data and had a false-positive rate of 37.4%, sixteen points higher than the Saliency 

model. While the model correctly classified more malignant lesions than the previous two 

models, it significantly over-predicted benign images as malignant, leading to a high false-

positive rate. These difficulties could be due to the fact that image-level classification was not 

included in the original model framework and was instead derived simplistically from the 

available code. In addition, the original multi-label classification loss function was changed to 

cross-entropy loss for this project and the Dense CRF used to improve pseudo-labels was not 

employed. Finally, no method was used to repeatedly fit the model and save the model with the 

highest accuracy. After training, the model was simply run on the test data, and the results were 

recorded. 

The objective for building and training a deep learning algorithm to classify lesions in 

breast US images was to achieve 80-90% accuracy on test data using a deep learning model 
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architecture. This level would be considered state-of-the-art (Cao et al., 2019) and would match 

board-certified radiologist performance. While the basic CNN model achieved this goal, the 

Saliency model and TransCAM fell slightly short. Given that only basic data augmentations and 

simplified model optimization techniques were used to train the models, the accuracies achieved 

are acceptable in the context of this study for simulating the CAD software and testing visual 

explanation methods.

Visualization Methods

After achieving the accuracies shown in Table 2, each model was used for inference on 

the 54 Mayo images included in the test set. This was done to obtain predicted classification 

labels and heatmaps for each image, mimicking the real-world implementation of BUS Project 

CAD software.

Class Activation Maps

The first visualization method, class activation map (CAM), was implemented using the 

basic CNN model architecture and applied many of the popular AI explainability methods 

contained in the pytorch_grad_cam library (Gildenblat, 2021). Of the six methods tested on 

Mayo images—GradCAM, GradCAM++, HiResCAM, EigenCAM, EigenGradCAM, and 

FullGrad—only three produced distinct, meaningful heatmaps highlighting regions used for 

classification. These three methods can be seen in Figure 9 on a sample of Mayo test images. 

GradCAM and EigenCAM highlighted very similar regions of the image, whereas HiResCAM 

created a more patchwork-like heatmap.

GradCAM and EigenCAM both appear to locate and highlight the lesions contained in 

each breast US image. These methods should give a radiologist confidence in the model’s ability 

to find the region of interest and use it for classification. Image (f) shows that GradCAM 
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captured the elongated shape of the lesion, while EigenCAM (g) did not. And while the margins 

of the lesion are not precisely outlined, Dr. Rich Ellis, the Mayo Clinic radiologist attached to the 

BUS Project, noted that oftentimes the borders of a lesion are not well-defined, and so 

visualizing a precise boundary is not always necessary. Additional examples from all six 

methods on more Mayo images can be found in Appendix C.

Figure 9

GradCAM, EigenCAM, and HiResCAM on Mayo Breast US Images

Note. Because all CAM methods are applied after the CNN model classified the image, all 

methods show the same predicted class.

Saliency Maps

The second visualization method, saliency maps, was implemented through the Saliency 

model architecture. Two saliency maps, one for each class, with values representing the 

(a)   (b)      (c)        (d)

(e)  (f)      (g)        (h)
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contribution of each pixel toward the prediction of a malignant or benign lesion, were generated 

for each Mayo test image. The maps were then plotted as heatmaps over the original Mayo 

images. Figure 10 displays a sample of these visualizations comparing the models trained with 

and without L1 regularization.

Figure 10

Saliency Maps on Mayo Breast US Images

Note. The labels at the bottom of the saliency maps show the probabilities calculated by the 

models. Heatmaps could appear on both the Malignant and Benign maps if the probabilities were 

closer to 0.50. The columns with 𝜆 = 0 are from the model trained without regularization.

The models correctly classified both images and highlighted portions of each lesion. 

Regions with greater color intensity, red or green, showed where the model found the most 

important information for classification. The benign saliency map in (h) captured most of the 

lesion and showed increased intensity in the center of the lesion. This image should give a 

radiologist confidence in the model’s detection and classification of the lesion. However the 

malignant saliency map in (c) highlighted some regions outside the lesion, particularly in the far-

    (e)           (f)      (g) (h)

    (a)           (b)      (c) (d)
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right side of the image. This would be useful information for the radiologist to have: even though 

a large portion of the lesion was used by the model to predict malignancy, extraneous pixels 

were used as well. Overall, the saliency maps with lambda = 0.01 were more constrained to the 

lesions, highlighting fewer outside regions than the maps without regularization. From here, the 

saliency map method will refer only to the model trained with L1 regularization.

Attention Map-Enhanced Class Activation Maps

The final visualization method, attention-map enhanced CAMs, was implemented with 

TransCAM. The model architecture produced both classification labels and CAMs that were 

refined with the attention maps generated by the transformer branch of the model. Two maps 

were produced for each Mayo test image, one with the malignant activations and one with the 

benign activations. Figure 11 displays a sample of the visualizations produced. 

Figure 11

TransCAM Attention Enhanced CAM on Mayo Breast US Images

Input Malignant Benign

label: malignant

label: benign
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TransCAM highlighted the lesions from both images, but also highlighted unrelated 

artifacts and shadows that were not parts of the lesion. These images, as they are, would not give 

a radiologist confidence in the model’s classification. However, TransCAM does appear to 

outperform both the basic CNN and Saliency models in capturing the borders and irregular 

shapes of the lesions. While this type of model still needs refinement and more customization to 

the task of breast US, these results show the promising possibility of more precise lesion 

localization or segmentation.

Conclusion

The three model architectures achieved acceptable levels of accuracy for the purpose of 

this study. While it was possible to produce meaningful visualizations of the regions used by 

each model for classification, those visualizations could improve with higher-performing models. 

Of the three visualization techniques, saliency maps provided the best combination of model 

performance and interpretability. Each method had strengths and weaknesses, but the Saliency 

model generated the most meaningful heatmaps that communicated the most class-specific 

information. Moreover, the model has the possibility of improved performance when more data 

becomes available. The CAMs often produced heatmaps that highlighted very large and non-

specific regions, and the attention-map enhanced CAMs from TransCAM were not yet of high 

enough quality or confidence to match the other two methods.

Chapter 5: Discussion

Introduction

The purpose of this study was to research, implement, and evaluate some of the most 

popular methods for visually explaining deep learning algorithms in application to breast US 

image classification. The American College of Radiology advocates for radiologists to have a 
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high-level understanding of an AI model when used in a clinical setting (Sendak et al., 2021). 

One way to address this is by visualizing the regions of the US used in classification. This 

chapter presents a summary and discussion of the results, including limitations and the potential 

consequences, as well as recommendations for future research.

Summary of Findings

Three deep learning algorithms were trained and tested on 1678 breast US images from 

the Mayo Clinic and from public datasets. For each algorithm, a method of model visualization 

was then implemented to interpret how the model predicted lesion pathology. These 

visualizations all took the form of heatmaps highlighting regions of the image used by the 

algorithm. Saliency maps with L1 regularization, created by the Saliency model, were selected as 

the most promising visual tool for a radiologist to understand and interpret the so-called black 

box deep learning algorithm. The model achieved 78.2% accuracy on the test set and the 

heatmaps were shown to localize the lesions and differentiate between classes. The class-specific 

information communicated by the saliency maps set them apart from the single-image CAMs—

and while the attention map-enhanced CAMs had the potential to communicate similar class-

specific information, they were not fully developed in this study and the quality was not at a 

level to compare to the other methods. In addition, because this study focused on how 

information could be presented to a radiologist, the <80% accuracy was acceptable within the 

scope of the project.

Discussion

While the accuracy levels achieved by the models in this project were slightly below the 

objective of 80-90%, the models performed well enough to show what is possible for visually 

explaining the deep learning algorithms. Of the three models, the basic CNN with ResNet-34 
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backbone is most similar to the architecture currently favored by the BUS Project, albeit 

simplified to predict a binary pathology rather than a BI-RADS score. Additionally, this model 

reached the highest accuracy at 83.4%. However, the popular CAM techniques that can be 

applied to any CNN without altering the model architecture produced simple visualizations that 

did little more than locate the area of the lesion. For a radiologist, these visual explanations 

would only demonstrate whether or not the model found the lesion. 

Alternatively, ViTs are gaining more attention within the BUS Project and in the CAD 

field more broadly (Matsoukas et al., 2021). The implementation of TransCAM shown in this 

project was exploratory in nature, and has much room for improvement. That being said, the 

attention map-enhanced CAMs marked the borders of the lesions with much more detail than 

both the CAMs and saliency maps. With further development, these visualizations could be a 

valuable model explainability tool if the BUS Project moves in the direction of replacing CNNs 

with ViTs.

Overall, the finding that saliency maps are the most promising visual tool for explaining 

the CNN model supports the studies by Shen, Shamout, et al. (2021) and Shen, Wu, et al. (2021). 

These two studies using AI to identify breast cancer in US and mammography utilized saliency 

maps both to localize the ROI and to explain the predictions. Given only image-level labels, the 

models were able to locate malignant lesions. This develops radiologist trust and helps them 

understand the model’s strengths and limitations. The saliency maps produced by this study 

show the same possibility for the BUS Project.

One main challenge this project faced was the lack of data. With more high-quality breast 

US images from Mayo clinic, the models could have achieved higher accuracies and produced 

heatmaps that more specifically located the lesions. For example, many of the saliency maps did 
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not clearly define the borders of the lesions. With more data and more rigorous optimization, the 

Saliency model should be able to achieve accuracy on par with other state-of-the-art deep 

learning CAD systems.  

Another important consideration is the high false-positive rate of the Saliency model. 

Compared to the study mentioned above, which focused on AI reducing false-positive diagnoses, 

the Saliency model underperformed (Shen, Shamout, et al., 2021). This is a weakness of the 

model that will need to be closely studied and accounted for if the BUS Project moves forward in 

implementing a similar model architecture. It is possible that this is a result of the simplified 

model implementation coupled with the lack of data, but it could also represent a major 

shortcoming of the method.

Suggestions for Future Research

The viability of CAMs as a simple visual tool and saliency maps as a more informative 

tool for explainable AI applied to breast US have been demonstrated in this study. In addition, 

attention map-enhanced CAMs were shown to have a promising ability to highlight the irregular 

borders of lesions, although the overall model achieved lower accuracy and often highlighted 

extraneous regions of the image. Due to time and data limitations, further refinement of these 

methods was not within the scope of this project but is recommended for future research.

First, the method for constraining the saliency maps to highlight only the most important 

pixels should be tested and developed further. The basic comparison with and without L1 

regularization was only the first iteration of this goal. In their study, Shen, Shamout, et al. (2021) 

tested lambda ∈ 10[−3, 0.5] for hyperparameter tuning to create the best saliency maps. In a 

different approach, the Med-Tech startup See-Mode recently released an AI system to help 

radiologists find and classify lesions according to the BI-RADS score, and its software appears 
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to use bounding boxes to help localize the lesions (Ang, 2022). Figure 12 shows an example of 

their system. 

Figure 12

See-Mode Radiologist Interface (Ang, 2022)

While model explainability does not appear to be a major feature on the interface, precise 

bounding boxes contain the lesions and exclude extraneous regions of the US image. If 

combined, these two techniques could improve the readability of saliency maps for radiologists 

and better localize the lesions.

Second, further research in applying TransCAM to breast US is necessary if the BUS 

Project moves in the direction of ViTs. The potential for attention map-enhanced CAMs goes 

beyond what has been seen in any of the other visualization methods for segmenting objects and 

following the borders. Figure 13 demonstrates what the model achieved on a generic image 

dataset when asked to highlight the “boat” class. 
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Figure 13

TransCAM Detecting “Boat” (Li et al., 2022)

Not only are the boats almost perfectly outlined, but two are highlighted in one image. This 

stems from the multilabel setup of the data used for TransCAM. While the breast US data was 

set up in the same way for this study, none of the images actually contained more than one 

lesion. However, in a clinical setting, there may be more than one lesion present in a US image. 

Additionally, the Dense CRF used in the original study to refine pseudo-labels was not used in 

this project. The study and implementation of the many optimization techniques used in 

TransCAM could result in compelling visualizations that push the BUS Project in the direction 

of ViTs.

Finally, an additional study is necessary to fully implement one or multiple of the studied 

visualization techniques on the full model architecture used by BUS Project. The input will 



43

include multiple characteristics of the lesion rather than just a pathology label, and the model 

output will be a BI-RADS score. The more complex model could affect the clarity and 

confidence of the visualization methods that work well within the scope of binary pathology 

labels.

Conclusion

This study aimed to implement and evaluate three methods for visually explaining deep 

learning algorithms when applied to breast US classification. The results showed that saliency 

maps produced by a modified CNN model architecture communicate the most information. The 

class-specific heatmaps would provide a radiologist with confidence in the black box algorithm 

when the lesion is localized, and reveal limitations in the model prediction when extraneous 

regions are highlighted. With additional data and improved model optimization techniques, this 

model could achieve state-of-the-art accuracy and produce more accurate and precise 

visualizations than those shown in this study. As more data becomes available and the CAD 

system is improved, it is the hope of this study that the BUS Project continues to develop and 

prioritize model explainability for the sake of responsible AI in healthcare.
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Appendix A: Code

https://github.com/tbodart/capstone/blob/main/Teresa_Bodart_Capstone_Final.ipynb

https://github.com/tbodart/capstone/blob/main/Teresa_Bodart_Capstone_Final.ipynb
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Appendix B: Saliency Model without Regularization Confusion Matrix

Predicted Values

benign malignant

benign 146 41
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malignant 31 113
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Appendix C: Additional CAM Methods
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